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Congruences of Fluids in a Finslerian
Anisotropic Space-Time1
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We derive the generalized Raychauduri equation concepts of expansion, shear and
vorticity. We give the Ricci tensor of a constant-curvature Randers–Finsler space metric
whose first term is the Robertson–Walker metric.
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1. INTRODUCTION

During the last year, observational investigations of the increased values
of anisotropy of microwave cosmic background radiation (Bennet et al., 2003;
Patridge, 1995) suggest the introduction of an anisotropic metric structure in
the underlying geometry of space-time. A candidate geometry for the study of
generalized field equations with respect to the density and pressure of fluids
moving in anisotropic gravitational fields, is Finsler geometry.

Many researchers have studied properties of the gravitational field and of
space-time in the framework of this geometry. We indicatively mention (Asanov,
1985; Asanov and Stavrinos, 1991; Balan and Stavrinos, 2002; Beil, 1989, 2003;
Ikeda, 1995; Ishikawa, 1981; Miron and Anastasiei, 1987; Stavrinos, 2002;
Stavrinos and Diakogiannis, 2004; Stavrinos and Ikeda, 2004; Vacaru, 2001;
Vacaru and Stavrinos, 2002).

In the next section we shall consider the concept of expansion, shear and
vorticity of time-like flows as these are defined in the Finslerian context and we
shall use them to derive the generalized Raychauduri equation. This equation plays
an important role in the Riemannian prototype of general relativity (Ellis et al.,
1990; Hawking and Ellis, 1973).
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The derivation of the field equations of fluids in the Finslerian space-time
can be considered for a possible test of Finsler geometry in connection with
the observational values of microwave background radiation, given that a special
Finsler–Randers type space of constant curvature is used.

Under these circumstances the Robertson–Walker metric is no longer valid.
However, this metric can constitute a part of an anisotropic Finslerian metric that
we introduce in the form

L(x, y) = LR-W(x, y) + φ(x)ūaya (1)

where

LR-W(x, y) = 1

2
{ṫ2 − R2(t)[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2]}1/2

is the Lagrangian of the Robertson–Walker metric, ūa represents a unit vector
which expresses the observed anisotropy of the microwave background radiation,
φ(x) is a scalar function and ya = dxa

dt
denotes a direction in the space.

A general form of the metric (1) has been defined previously in (Stavrinos
and Diakogiannis, 2004), where the first term of (1) is substituted by the pseudo-
Riemannian Lagrangian metric LR = √

gij yiyj into studying the geometrical
properties of an anisotropic direction-dependent Finslerian space-time.

2. FINSLERIAN CONGRUENCES OF ANISOTROPIC FLOWS

A Finsler space is constructed by a differentiable manifold and a fundamental
smooth metric function F (x, y) on its tangent bundle TM which depends on the
variables, x ∈ M of position and y = dx

dt
of direction in which F is homogeneous

of first degree with respect to y (Rund, 1959; Miron, 1987).
Suppose (F 4, gij (x, y)) is a four dimensional differentiable manifold

and gij (x, y) the anisotropic Finslerian metric is assumed to have signature
(+,−,−,−) for any (x, y).

The motion of a particle in a Finslerian space-time F 4 is described by a pair
(x, V ) where x ∈ F 4 and V = dx

dτ
the 4-velocity of the particle (τ is proper time)

which represents the tangent of its world-line expressing the motion of typical
observers in the Finslerian anisotropic universe.

A smooth congruence in an open coordinate neighborhood U of F 4 can
be represented by a preferred family of world lines (time-like curves) such that
through each couple (x, V ) ∈ U there passes precisely one curve in this family in
which V is the tangent vector of this curve to that point x. This consideration is
analogous to the Riemannian context.

The metric of Finslerian space-time is described by the relation

ds2 = F 2(x, y) = gij y
iyj
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The time-like, null and space-like curves can be defined in the Finslerian
framework by the following relations (Ishikawa, 1981)

time-like gij (x, y)V iV j > 0

null-like gij (x, y)V iV j = 0 (2)

space-like gij (x, y)V iV j < 0

In the following we assume Finslerian fluid congruences that the matter flow
lines of the fluid are time-like geodesics and are parameterized by the proper time
τ so that a vector field V i(x) of tangents is normalized to the unit length V i = yi

F
.

We denote by �ik = Vi;k the Finslerian δ-covariant derivative with respect to the
direction of V (x) (Rund, 1959).

We notice that �ik belongs to the normal subspace of the tangent space

�ikV
k = 0, �ikV

i = 0 (3)

These are followed because of geodesic condition and the relation of normalization
that means �ik is a “spatial” vector.

A physical and geometrical interpretation can be given if we consider a
smooth one parameter Cs(τ ) congruence of Finslerian geodesics. Because of the
equation of geodesics deviation (Rund, 1959), the deviation vector zi provide us
the separation from a geodesics C0 to a nearby one of the family.

From the condition

LV zi = 0 (4)

we get

zi
;�V

� = V i
;�z

� − ∂zi

∂yn

(
V n

;�y
�
) = �i

�z
� − ∂zi

∂yn
�n

�y
� (5)

where L represents the Finslerian Lie variation.
The tensor field �

j

i measures the change of zi to be parallel—transported
along—a Finslerian stream line. From a physical point of view an observer moving
along the geodesic C0 would find the adjacent geodesics surrounding him to be
stretched and rotated by the field �

j

i . We write down the angular metric hij in the
Finslerian framework

hij = gij − ViVj

where V i is the unit tangent vector. This tensor has the property

hijV
i = 0. (6)

Using the δ-differentiation in the direction of V i(x) for a congruence of fluid
lines (not necessarily geodesics) we define the expansion, vorticity and the shear
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(Asanov, 1985) by the following forms:

�̃ = �ijh
ij = V i

|i − Ci
imV̇ m (7)

ω̃ik = �[ik] + V̇iVk − V̇kVi (8)

σ̃ik = �(ik) − 1

3
�̃hik − 2CikmV m − V̇iVk − V̇kVi (9)

where V̇ i = V i
|kV

k = �i
kV

k and “|” denotes the Riemannian covariant deriva-
tive associated with the osculating Riemannian metric aij (x) = gij (x, V (x)). The
symbols “[ ],” “( )” denote the antisymmetrization and symmetrization of �ik , re-
spectively. The tensor Cijk = 1

2
∂fij (x,y)

∂yk is symmetric in all its subscripts. Therefore
the first extended Finslerian covariant derivative of V can be expressed by

�ik = 1

3
�̃hik + σ̃ik + ω̃ik + V̇iVk (10)

The proper time derivative of any tensor T
ij

kl along the fluid flow lines can be given
by

Ṫ
ij

kl = T
ij

kl;mV m

Remark The consideration of a Finslerian incoherent fluid provides that the fluid
lines are geodesics and V̇ i = �i

kV
k = 0. In this case the Finslerian geodesics

coincide with the Riemannian ones of a V -Riemannian space (osculating Rieman-
nian).

In the following we derive the Raychauduri equation in a Finslerian space-
time. By the commutation relations of δ-covariant derivative of the vector field
V i(x) we obtain

Vi;hk − Vi;kh = L
j

ikhVj (11)

where Li
jhk curvature tensor is derived by the δ-covariant derivative with respect

to the osculating affine connection coefficients ai
jk(x, V (x)) (Asanov, 1985; Rund,

1959).

Li
jhk(x, V (x)) =

(
∂Li

jh

∂xk
+ ∂Li

jh

∂V l

∂V l

∂xk

)
−

(
∂Li

jk

∂xh
+ ∂Li

jk

∂V l

∂V l

∂xh

)
+Li

mkL
m
jh − Li

mhL
m
jk

In virtue of (11) we get

V kVi;hk = Li
ihkVjV

k + Vi;khV
k

or

V k�ih;k = L
j

ihkVjV
k + �ik;hV

k = L
j

ihkVjV
k + (�ikV

k);h − �ikV
k
h
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The last relation can be written as

V k�ih;k = −�ik�
k
h + L

j

ihkVjV
k + V̇i;h (12)

Taking the trace of (12) we have

V k(hi��i�);k = d�̃

dτ
= −�ik�

ik − Li�V
iV � + V̇ i

;i (13)

Using the relations (7)–(10) and substituting in (13) we obtain

d�̃

dτ
= −1

3
�̃2 − σ̃ikσ̃

ik + ω̃ikω̃
ik − Li�V

iV � + V̇ i
;i (14)

This is Raychauduri’s equation of the Finslerian space-time. In the Riemannian
approach of general relativity this equation plays a crucial role in the theorems of
singularities. The change of expansion which is expressed by d�̃

dτ
depends on the

V -anisotropic behavior of Cartan tensor Ci
jk along the matter flow lines. When

we consider an incoherent fluid, the fluid-lines are geodesics and the last term of
right-hand side of (14) is V̇ i = 0. In this case the Raychauduri equation is reduced
to the form of a V -Riemannian metric space associated with the congruence of
geodesics.

A perfect fluid in the Finslerian space time case has the form

Tij (x, V (x)) = (µ + p)Vi(x)Vj (x) + paij (15)

where p = p(x), µ = µ(x) represent the pressure and the density of the fluid
respectively.

The Einstein equations can be written in the form

Lij (x, V (x)) = K

(
Tij (x, V (x)) − 1

2
T k

k aij

)
, K : constant (16)

where the Ricci tensor Lij is directly determined by the matter energy–momentum
tensor Tij at each point, associated with the osculating Riemannian metric tensor
aij (x) = gij (x, V (x)). Substitution of (15) to (16) gives

LijV
iV j = 1

2
K(µ + 3p) (17)

The term Li�V
iV � corresponds to an anisotropic gravitational influence of the

matter along the world lines of the fluid and it expresses the tidal force of the field.
The form of Raychauduri equation in the case of perfect fluids (cf. 15) is

given in virtue of (17) by

˙̃� = d�̃

dτ
= −1

3
�̃2 − σ̃ikσ̃

ik + ω̃ikω̃
ik − 1

2
K(µ + 3p) + V̇ i

;i (18)
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The condition

Li�V
iV � > 0 (19)

provides us with the so called strong energy condition for every time-like vector V α

tangent to time-like geodesics. From (17) and (19) we notice that the fluid energy
µ and pressure p satisfy the energy condition µ + p > 0. This condition uniquely
defines the Finslerian world lines (congruences) of the fluid with V (x) tangent
vector field analogous to that of Riemannian framework (Ellis et al., 1990). The
term LilV

iV l > 0 can be considered as a key for the existence of conjugate points
in the Finslerian space-time structure. Indeed if we are given a Finsler manifold
(M4, F ) which is forward geodesically complete we may apply the theorems of
Bonnet-Myers and Hawking–Ellis (Bao et al., 2000; Hawking and Ellis, 1973)
along flow lines of the fluid. By virtue of (17) and (19) we deduce

(µ + 3p) ≥ K ′ > 0 (20)

where K ′ = 6λK−1, λ some constant. Then every geodesic with length l = π√
K

or longer must contain conjugate points.

3. ROBERTSON–WALKER METRIC IN A
RANDERS–FINSLER SPACE-TIME

We define the Finslerian metric function (Stavrinos, 2002; Stavrinos and
Diakogiannis, 2004) for an anisotropic model of the universe as

L(x, y) =
√

αij yiyj + φ(x)ūay
a (21)

where ūa is a unit vector which expresses the observed anisotropy of the microwave
background radiation, φ(x) plays the role of the “length” of the vector ua(x) =
φ(x)ūa , φ(x) ∈ R .The coefficients gij in (21) we will are of general Riemannian
type. In the following we use the Robertson–Walker model for the first term of
(21) and we will derive the Ricci tensor, Lij (x, y), for a Finslerian space-time of
constant curvature. Along to this direction we choose a coordinate system with
spherical coordinates where the components (t(τ ), r(τ ), θ (τ ), φ(τ )) are functions
of proper time τ . The Lagrangian of Riemannian geometry for the R–W metric

ds2 = dτ 2 − R2(τ )

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
is defined by

LR(xi, yi) =
√

αijyiyj = 1

2
{ṫ2 − R2(t)[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θφ̇2]}1/2

(22)
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where we set xi as

xi =


t

r

θ

φ

 yi =


ṫ

ṙ

θ̇

φ̇

 (23)

k = 0,±1 and R(t) the scale factor. The R–W metric

αij = diag

(
1,− R2(t)

1 − kr2
,−R2(t)r2,−R2r2 sin2 θ

)
In the work of Stavrinos and Diakogiannis (2004) we have considered a vector

yi to be a time-like or null vector. Under this condition the anisotropy vector
ui = φ(x)ûi is space-like with components ui(x) = (0, u1(x), u2(x), u3(x)) and
uα(x) = ua(t, r, θ, φ). Now we put σ = √

αij yiyj , β = ua(x)ya in (21), thus we
get

σ = {ṫ2 − R2(t)[(1 − kr2)−1ṙ2 + r2θ̇2 + r2 sin2 θφ̇2]}1/2 (24)

β = k1ṙ + k2θ̇ + k3φ̇ (25)

Next, we calculate the Finslerian metric which is derived by the generator metric
function F (x, y) in the form

gij = F

σ
αij + 1

σ
(yiuj + uiyj ) − β

σ 3
yiyj + uiuj . (26)

The indices of yi are raised and lowered by the metric gij . In such a case we have

yi =
(

ṫ ,− R2ṙ

1 − kr2
,−R2r2θ̇ ,−R2r2 sin2 θ φ̇

)
(27)

yiuj =


0 ṫu1 ṫu2 ṫu3

0 − R2 ṙ
1−kr2 u1 − R2 ṙ

1−kr2 u2 − R2 ṙ
1−kr2 u3

0 −R2r2θ̇u1 −R2r2θ̇u2 −R2r2θ̇u3

0 −R2r2 sin2 θφ̇u1 −R2r2 sin2 θφ̇u2 −R2r2 sin2 θ φ̇u3

 (28)

Similarly we calculate

yiyj =


ṫ2 − R2 ṙ ṫ

1−kr2 −R2r2θ̇ ṫ −R2r2 sin2 θ φ̇ṫ

− R2 ṙ ṫ
1−kr2

R4 ṙ2

(1−kr2)2
R4r2 ṙ θ̇
1−kr2

R4r2 sin2 θ ṙφ̇

1−kr2

−R2r2θ̇ ṫ R4r2 ṙ θ̇
1−kr2 R4r4θ̇2 R4r4 sin2 θ θ̇ φ̇

−R2r2 sin2 θ φ̇ṫ
R4r2 sin2 θ ṙφ̇

1−kr2 R4r4 sin2 θ θ̇ φ̇ R4r4 sin4 θ φ̇2


(29)
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Taking into account (24)–(30) we derive explicitly the metric gij by (21).

gij =
(

f 1 f 2

f 3 f 4

)
(30)

with

f 1 =
(

f 1
00 f 1

01

f 1
10 f 1

11

)

f 2 =
(

f 2
00 f 2

01

f 2
10 f 2

11

)

f 3 =
(

f 3
00 f 3

01

f 3
10 f 3

11

)

f 4 =
(

f 4
00 f 4

01

f 4
10 f 4

11

)

where

f 1
00 = F

σ
− β

σ 3
ṫ2

f 1
01 = ṫu1

σ
+ β

σ 3

R2ṙ ṫ

1 − kr2

f 1
10 = ṫu1

σ
+ β

σ 3

R2ṙ ṫ

1 − kr2

f 1
11 = −F

σ

R2

1 − kr2
− 2R2ṙu1

σ (1 − kr2)
− β

σ 3

R4ṙ2

(1 − kr2)2
+ (u1)2

f 2
00 = ṫu2

σ
+ βσ−3R2r2θ̇ ṫ

f 2
01 = ṫu3σ

−1 + βσ−3R2r2 sin2 θ φ̇ṫ

f 2
10 = −R2

σ

[
r2θ̇u1 + ṙu2

1 − kr2

]
− β

σ 3

R4r2ṙ θ̇

1 − kr2
+ u1u2

f 2
11 = −R2

σ

[
r2 sin2 θ φ̇u1 + ṙu3

1 − kr2

]
− β

σ 3

R4r2 sin2 θ ṙφ̇

1 − kr2
+ u1u3

f 3
00 = ṫu2

σ
+ β

σ 3
R2r2θ̇ ṫ
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f 3
01 = −R2

σ

[
r2θ̇u1 + ṙu2

1 − kr2

]
− β

σ 3

R4r2ṙ θ̇

1 − kr2
+ u2u1

f 3
10 = ṫu3

σ
+ β

σ 3
R2r2 sin2 θφ̇τ̇

f 3
11 = −R2

σ

[
r2 sin2 θφ̇u1 + ṙu3

1 − kr2

]
− β

σ 3

R4r2 sin2 θ ṙφ̇

1 − kr2
+ u3u1

f 4
00 = −F

σ
R2r2 − 2R2r2θ̇u2

σ
− β

σ 3
R4r4θ̇2 + (u2)2

f 4
01 = −R2r2

σ
[sin2 θφ̇u2 + θ̇u3] − β

σ 3
R4r4 sin2 θ θ̇ φ̇ + u2u3

f 4
10 = −R2r2

σ
[sin2 θφ̇u2 + θ̇u3] − β

σ 3
R4r4 sin2 θ θ̇ φ̇ + u2u3

f 4
11 = −F

σ
R2r2 sin2 θ − 2R2r2

σ
sin2 θ φ̇u3 − β

σ 3
R4r4 sin4 θφ̇2 + (u3)2

Thus the Ricci curvature Lij in a Finslerian space-time of constant curvature

Lijkl = K(gikgjl − gilgjk)

is explicitly given in virtue of (30) by

Lij = 3Kfgj

with

Lij = Lr
ijr

The scalar curvature L is related with the constant K by the relation

L = 12K

Einstein’s equation in this Finslerian space-time of constant curvature has the form

Gij = kTij , k = 8π

where Tij is given by (15). Here we assume the cosmological constant � = 0.
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